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Abstract A wavelength selection method for discrete
wavelength combinations was developed based on equi-
distant combination-partial least squares (EC-PLS) and
applied to a near-infrared (NIR) spectroscopic analysis of
hemoglobin (Hb) in human peripheral blood samples. An
allowable model set was established through EC-PLS on
the basis of the sequence of the predicted error values.
Then, the wavelengths that appeared in the allowable
models were sorted, combined, and utilized for modeling,
and the optimal number of wavelengths in the combina-
tions was determined. The ideal discrete combination
models were obtained by traversing the number of
allowable models. The obtained optimal EC-PLS and
discrete wavelength models contained 71 and 42 wave-
lengths, respectively. A simple and high-performance
discrete model with 35 wavelengths was also established.
The validation samples excluded from modeling were used
to validate the three models. The root-mean-square errors
for the NIR-predicted and clinically measured Hb values
were 3.29, 2.86, and 2.90 g$L–1, respectively; the
correlation coefficients, relative RMSEP, and ratios of
performance to deviation were 0.980, 0.983, and 0.981;
2.7%, 2.3%, and 2.4%; and 4.6, 5.3, and 5.2, respectively.
The three models achieved high prediction accuracy.
Among them, the optimal discrete combination model
performed the best and was the most effective in enhancing
prediction performance and removing redundant wave-
lengths. The proposed optimization method for discrete
wavelength combinations is applicable to NIR spectro-
scopic analyses of complex samples and can improve
prediction performance. The proposed wavelength models
can be utilized to design dedicated spectrometers for Hb

and can provide a valuable reference for non-invasive Hb
detection.
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1 Introduction

Hemoglobin (Hb) is an iron-containing compound allos-
teric protein with the functions of transporting oxygen and
carbon dioxide, maintaining blood acid–base balance, and
others [1]. Hb content is one of the most common clinical
indicators, and it plays a major role in the diagnosis of
anemic diseases (e.g., hemolytic anemia and iron-defi-
ciency anemia) and also has reference values in the
diagnosis of other important diseases (e.g., chronic
mountain sickness, leukemia, cardiopulmonary diseases,
oncological diseases, kidney diseases, etc) [2–7]. The
standard clinical method of Hb determination is spectro-
photometry based on haemiglobincyanide (HiCN), which
requires chemical reagents and specialized laboratory
measurements. However, this method is unsuitable for
non-invasive detection of Hb in routine health screening
and cannot meet the requirements of continuous and real-
time monitoring during operation.
The near-infrared (NIR) spectrum primarily reflects the

vibration absorption with overtones and combination
frequencies for hydrogen-containing functional groups
(e.g., C–H, O–H, and N–H). The NIR spectrum is
nondestructive and possesses the advantages of short
wavelength and high energy, which can penetrate the
surface of a sample and return. Therefore, it has the
potential to be used in non-invasive detection. The NIR
spectrum has been used in vivo or in vitro hemoglobin
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analyses, and it has elicited widespread attention due to its
green (non-invasive or reagent-less) detection methods [8–
12]. The related mechanism of non-invasive detection is
unclear due to the weak target signal and low signal-to-
noise ratio (SNR). Currently, the accuracy of non-invasive
detection has not reached the standard of clinical
application. Therefore, basic research needs to be carried
out deeply.
This work further investigated the NIR analysis method

for Hb in human peripheral blood samples and focused on
optimizing the NIR wavelength model, overcoming noise
interference, and improving prediction accuracy. This
study can provide a valuable reference for further
noninvasive detection.
For complex samples with multiple components (e.g.,

human blood), spectroscopic analysis of the target
component must mitigate the disturbance of the other
components. Appropriate wavelength selection is an
important but difficult aspect and is essential for improving
prediction performance, reducing model complexity, and
designing dedicated spectrometers with high SNR. Mov-
ing-window partial least squares (MW-PLS) is a well-
performed method for continuous waveband selection that
employs the initial wavelength and number of wavelengths
as parameters [13–20]. As a promotion of the MW-PLS
method, the recently proposed equidistant combination
PLS (EC-PLS) method [21,22] focuses on the selection of
the combination of equidistant wavelengths by using initial
wavelength, number of wavelengths, and number of
wavelength intervals as parameters. This approach can
more effectively overcome spectral co-linearity in adjacent
wavelengths and enhance the model prediction effect. The
EC-PLS method can select all ergodic wavelength
combinations with equidistant wavelengths within a large
range because of the low freedom degree of its parameters.
However, the molecular absorption bands of measured
samples are not always equidistant, and the equidistant
wavelength combinations selected by EC-PLS may still
contain redundant wavelengths. Therefore, EC-PLS needs
to be improved further.
In the present study, an allowable model set was

established based on an appropriate level of permissibility.
The wavelengths in the equidistant model set were sorted
and combined according to their frequencies, and an ideal
discrete wavelength model was proposed. The high water
content of whole-blood samples can lead to saturated
absorption and noise interference. Therefore, high-absorp-
tion wavebands were removed, and the remaining wave-
bands were used for modeling.
Savitzky-Golay (SG) smoothing [13,23–25] is a com-

monly utilized multi-parameter spectral preprocessing
method that can effectively eliminate spectral noise. In
this study, all modes of SG smoothing were used for
modeling, and the optimal mode was selected according to
the prediction effects. On this basis, the SG smoothing
spectra were used for further optimization with EC-PLS.

2 Materials and methods

2.1 Samples, instruments and reference methods

A chronological, two groups of human peripheral blood
samples were collected from a hospital and placed in 0.2%
ethylenediaminetetraacetic acid-containing tubes. The first
group (180 samples) in the first day was used for modeling,
whereas the second group (120 samples) in the second day
was used for validation. The Hb values of all samples (300
samples) were measured with a BC-3000Plus automatic
blood cell analyzer (Shenzhen Mairui, China) by using the
full blood cell count method. Given that blood samples
were collected and used in this study, the informed consent
of all individual participants was obtained. Experiments
were performed in compliance with relevant laws and
institutional guidelines and approved by a local medical
institution, which obtained informed consent from all
subjects.
The measured values were used as reference values for

the calibration, prediction, and validation of spectroscopic
analysis. The measured values of the 300 samples ranged
from 83 to 161 g$L–1, and the mean value and standard
deviation were 125.5 and 14.6 g$L–1, respectively.
The spectra were collected by the XDS Rapid ContentTM

liquid grating spectrometer (FOSS, Denmark) equipped
with a 2 mm cuvette transmission accessory. The scanning
scope of the spectrum spanned 400–2498 nm with a 2 nm
wavelength gap, including the entire NIR region and a
large part of the visible region. Wavebands of 400–1100
nm and 1100–2498 nm were adopted for silicon and
plumbous sulfide detection, respectively. Each sample was
measured thrice, and the mean value of the three
measurements was used for modeling. The spectra were
measured at a temperature of (25�1)°C and relative
humidity of (46�1)%.

2.2 Evaluation indicators

The 180 modeling samples were randomly divided into
calibration (100 samples) and prediction (80 samples) sets.
The corresponding root-mean-square (RMS) error and
correlation coefficient for prediction were calculated and
denoted as RMSEPM and RP,M, respectively. The model
parameters were optimized according to the minimum
RMSEPM.
Then, the 120 validation samples were utilized to

validate the selected models. The corresponding RMS
error and correlation coefficient for prediction in validation
set were calculated and denoted as RMSEP and RP,
respectively. The relative RMSEP and the ratio of
performance to deviation were further calculated and
denoted as RRMSEP and RPD, respectively. Among them

RRMSEP ¼ RMSEP

CAVE
, RPD ¼ CSD

RMSEP
, CAVE, CSD is the
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mean values and the standard deviation of actual measured
values for validation set, respectively.
Quantitative analyses of Hb was performed according to

these processes.

2.3 PLS with SG smoothing

The parameters of the SG method include the order of
derivatives (d), the degree of polynomial (p), and the
number of smoothing points (m, odd). In the original work
on SG [24], parameters d, p, andmwere set to d = 0, 1, 2, 3,
4, 5; p = 2, 3, 4, 5, 6; and m = 5, 7,..., 25. Considering that
the absolute values of the fourth and fifth derivatives are
very small (which means a large amount of spectral
information is missing), the SG modes using these
derivatives were not used for screening in this study. The
remaining 99 modes were adopted. Furthermore, if the
wavelength gap and number of smoothing points are small,
then the smoothing window is narrow and the information
in the window for smoothing is insufficient, and it is
difficult to get satisfactory preprocessing effects. Thus, it
was necessary to expand the number of smoothing points
(m).
In the present study,mwas expanded to 5, 7,..., 51 (odd).

The calculation formulas for the added SG smoothing
modes were derived, and 264 modes were obtained.
That is, the parameters were set to d = 0, 1, 2, 3; p = 2, 3, 4,
5, 6; and m = 5, 7,..., 51. The number of latent variables (F)
was set to F = 1, 2,..., 20. A PLS model was established
for each SG smoothing mode, and the optimal
smoothing mode was selected according to the minimum
RMSEPM.

2.4 EC-PLS method

The EC-PLS method selects an appropriate combination of
equidistant wavelengths through PLS modeling. The
parameters used in this study were 1) initial wavelength
(I), 2) number of wavelengths (N), 3) number of
wavelength intervals (G), and 4) number of latent variables
(F). In a specific screening region, each combination of
equidistant wavelengths, which corresponded to a para-
meter combination (I,N,G), was employed to establish
PLS calibration and prediction models. The optimal F was
also determined according to the prediction effect. The
optimal parameter combination (I,N,G) was further
screened according to the prediction effect of the PLS
models.

2.4.1 Selection of number of PLS factors

In PLS regression, the number of latent variables (F) is an
important parameter that corresponds to the number of
integrated spectral variables. The selection of a reasonable
F is necessary but difficult. In this study, based on the

prediction effect (RMSEPM) of the calibration and the
prediction set, the optimal F is determined as the follows:

RMSEPMðI ,N ,GÞ ¼ min
F

RMSEPMðI ,N ,G,FÞ, (1)

where (I,N,G) is an any fixed parameter combination.

2.4.2 Global optimal model

The global optimal model was further selected according
to the following equation:

RMSEP* ¼ min
I ,N ,G

RMSEPMðI ,N ,GÞ: (2)

2.4.3 Local optimal model for a single parameter

In the manufacturing of a spectrometer, the adopted
wavelengths (I, N, G) are usually restricted due to limits
in cost and material properties. The selected global optimal
model does not always meet actual conditions. Therefore,
the local optimal model that corresponds to a single
parameter (I, N or G) is significant.
For any fixed I, N, and G, the corresponding local

optimal model is selected respectively according to the
following equations:

RMSEPMðIÞ ¼ min
N ,G

RMSEPMðI ,N ,GÞ, (3)

RMSEPMðNÞ ¼ min
I ,G

RMSEPMðI ,N ,GÞ, (4)

and

RMSEPMðGÞ ¼ min
I ,N

RMSEPMðI ,N ,GÞ: (5)

Among the local optimal models, the models that are
close to the global optimal model in terms of prediction
performance and satisfied the actual constraints are
expected to be appropriate selections.

2.5 Allowable wavelengths model based on the EC-PLS

In order to eliminate the redundant wavelengths in the
equidistant wavelength models with EC-PLS method, an
allowable model set was proposed.
The equidistant wavelength models with EC-PLS were

sorted according to the values of RMSEPM from small to
large. The first S0 models were used and expressed as
follows:

ΛðsÞ ¼ l
ðsÞ
1 ,lðsÞ2 ,:::,lðsÞ

N ðsÞ

n o
, s ¼ 1,2,:::,S0 , (6)

where ΛðsÞ is the sth combination of equidistant wave-
lengths, N ðsÞ is the number of wavelengths of the sth

combination and l
ðsÞ
p is the pth wavelength of the sth

combination, i.e., p ¼ 1,2,:::,N ðsÞ.
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Noteworthy that the first model happens to be the global
optimal EC-PLS model. When S0 is small (e.g., S0£100),
the RMSEPM of the S0 models are close to one of the
optimal model. This result indicates that these S0 models
are similar to the optimal model in terms of prediction
effect.
Given that these S0 models may exhibit a containing

relationship, they need to be further simplified. When a
containing relationship exists between two wavelength
combinations as follows:

flðiÞ1 ,lðiÞ2 ,:::,lðiÞ
N ðiÞg � flðjÞ1 ,lðjÞ2 ,:::,lðjÞ

N ðjÞg,

1£i≠j£S0, (7)

the latter contains redundant wavelengths and must be
removed. The remaining models were established as the
allowable models, and the total number of these allowable
models was denoted as S (S£S0).

2.6 Discrete wavelengths model based on the allowable
wavelengths model

Assume that a total of K wavelengths appear in the S
allowable models, the K wavelengths arranged in a
descending order of their occurrence frequencies are
expressed as follows:

�1,�2,:::,�K , (8)

where the wavelengths with same frequencies are sorted
according to the natural order of the wavelengths from
small to large. The wavelengths with high frequencies
suggest high information, and the wavelengths with low
frequencies may be redundant wavelengths.
The K combinations of discrete wavelengths are then

proposed as follows:

Ωk ¼ �1,�2,:::,�kf g , k ¼ 1,2,:::,K : (9)

These combinations were used to establish PLS model.
The corresponding RMSEPM and RP,M values were
calculated, and the optimal combination of discrete
wavelengths was selected according to the minimum
RMSEPM. The corresponding number of wavelengths is
still denoted by N.
The above result is related to the number of allowable

models (S). An appropriate S needs to be screened to obtain
a better discrete combination model. In the current study, S
was set to S 2 f1g[f10,20,:::,100g, and the above
experiment was performed. The appropriate S value was
selected according to the corresponding prediction effect
(RMSEPM) and wavelength number (N). An ideal discrete
combination model was further obtained through a
comparison.
The computer platform was developed with MATLAB

R2009b software.

3 Results and discussion

The NIR spectra of 300 human peripheral blood samples in
the entire scanning region (400–2498 nm) are shown in
Fig. 1. It seems clear that the saturated absorption occurred
in the wavebands around 1950 and 2400 nm, which caused
high noise interference. In order to avoid strong absor-
bance, wavebands with absorbance higher than 4 (corre-
sponding to 99.9% absorption rate) were eliminated, and
the remaining were the combinations of 400–1880 and
2100–2300 nm.

3.1 PLS models

PLS models for Hb were established based on the entire
scanning region (400–2498 nm) and the unsaturated region
(400–1880 and 2100–2300 nm). The modeling effects
(RMSEPM, RP,M) are summarized in Table 1. The results
indicated that the prediction effect for the unsaturated
region was significantly better than that for the entire
scanning region. Therefore, it is necessary to remove the
saturation waveband with high absorption, and the
remaining waveband combination of 400–1880 and
2100–2300 nm will be carried out for further modeling.

3.2 PLS with SG smoothing

The PLS models corresponding to 264 SG smoothing
modes were established in the unsaturated region (400–
1880 and 2100–2300 nm) and were called SG-PLS
models. The modeling effects of the local optimal models

Fig. 1 NIR spectra of 300 human peripheral blood samples

Table 1 Parameters and prediction effects of PLS models with the

entire scanning region and the unsaturated region

wavelength/nm N F RMSEPM/(g$L
–1) RP,M

400–2498 1050 6 4.39 0.952

400–1800 and 2100–2300 842 8 3.80 0.965
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corresponding to each d (d = 0, 1, 2, 3) are summarized in
Table 2. The global optimal SG mode was 2nd order
derivative, 2nd degree polynomial and 31 smoothing
points (d = 2, p = 2, 3, and m = 31). The corresponding
RMSEPM was 3.14 g$L–1, which was obviously better than
that without SG smoothing. The prediction effects of the
global optimal SG-PLS model are also summarized in
Table 3. The corresponding SG derivative spectra are
shown in Fig. 2. The baseline deviations (drifts) of the
spectra of the different samples significantly decreased.

In addition, the RMSEPM of the local optimal models
corresponding to each m (m = 5, 7, ..., 51) distinguished by
different orders of the derivative is shown in Fig. 3. The
optimal m was above 25 (m = 31), so it is necessary to
extend the number of smoothing points. These results
indicated that the SG method can further reduce spectrum
noise and improve prediction performance. Thus, the
spectra processed by the global optimal SG mode were
used for further modeling.

3.3 Selection of equidistant wavelengths combination with
EC-PLS

On the basis of the above mentioned SG derivative spectra,
equidistant wavelength combinations were further deter-
mined using the EC-PLS method. The corresponding
waveband region was 400–1880 and 2100–2300 nm.
Parameters I, N, G, and F were set to I 2 f780,782,:::,

1880g[ f2100,2102,:::,2300g, N 2 f1,2,:::,100g, G 2 f1,
2,:::,10g and F 2 f1,2,:::,20g, respectively.
The obtained parameters of the global optimal model

were I = 1230 nm, N = 71, G= 6, and F = 7. The
parameters and prediction effects are summarized in Table
3. As shown in Table 3, the global optimal EC-PLS model
was better than the optimal SG-PLS model; thus, the
number of adopted wavelengths significantly decreased (N
= 71).
The combination of parameters (I, N,G) corresponded to

a continuous waveband when G = 1. In this case, EC-PLS
is equivalent to MW-PLS. Therefore, EC-PLS is the
extension of MW-PLS in terms of the algorithm.
In addition, the RMSEPM values of the local optimal

models corresponding to each single parameter (I, N, and
G) are shown in Fig. 4. The results of the global optimal
model can also be observed in the local optimal model
sequences. Figure 4 provides many available models,
among which the models with prediction effects close to
that of the global optimal model are still good options for
practical application.

3.4 Discrete combination models

First, the EC-PLS models were sorted according to
RMSEPM in an ascending order. Second, the evolution
of their RMSEPM values was observed. The RMSEPM of
the global optimal EC-PLS model was 2.67 g$L–1 (Table
3), which corresponded to the case of s = 1. The first 200
values of RMSEPM are given in Fig. 5 ð1£s£200Þ. When

Fig. 2 SG derivative spectra (d = 2, p = 2, 3, m = 31) of all
samples at 400–1880 and 2100–2300 nm

Fig. 3 RMSEPM of the local optimal models for each m
distinguished by different orders of derivative

Table 2 Effects of the local optimal SG-PLS model in 400–1880 and 2100–2300 nm corresponding to each order of derivative

d p m F RMSEPM/(g$L
–1) RP,M

0 6 41 10 3.24 0.973

1 2 17 11 3.18 0.976

2 2 31 11 3.14 0.977

3 3 49 12 3.26 0.971

Notes: d, order of derivatives; p, degree of polynomial; m, number of smoothing points
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s£100, the corresponding RMSEPM was less than or
equal to 2.81 g$L–1. These 100 models almost had no
difference with the optimal EC-PLS model in terms of
prediction effect (Fig. 5) and were thus regarded as
allowable. The number of allowable models (S) was set to
within 100 in the experiments.
For the cases of S = 10, 20,..., 100, the corresponding

optimal combinations of discrete wavelengths were
selected according to the method mentioned in Section
2.6. The number of adopted wavelengths (N) of the optimal
model of discrete wavelengths corresponding to each
number of allowable models (S) were further determined.
The RMSEPM and N of the optimal model of discrete
wavelengths for each S are shown in Fig. 6. The minimum
RMSEPM (RMSEPM = 2.55 g$L–1) was achieved when S =
40, and the corresponding N was also close to the
minimum (N = 42). The corresponding parameters and
modeling effects are also summarized in Table 3. The
results indicated that the optimal discrete model was
superior to the optimal EC-PLS model (RMSEPM = 2.67 g
$L–1, N = 71) in terms of prediction performance and
complexity of the wavelength model. The wavelength
combination (Ω42) of the optimal discrete model was the
follows: 1242, 1254, 1266, 1278, 1290, 1302, 1314, 1326,
1338, 1350, 1362, 1374, 1386, 1398, 1410, 1434, 1458,
1482, 1506, 1530, 1554, 1578, 1602, 1626, 1650, 1674,
1698, 1722, 1746, 1770, 1794, 1818, 1842, 1866, 2108,
2132, 2156, 2180, 2204, 2228, 2252, 2276 nm. The model
is a non-equidistant discrete combination model. For easy
observation, these wavelengths are labeled in the average
spectrum of the samples in Fig. 7. For comparison, the
equidistant wavelength combinations of the optimal EC-
PLS model are also labeled in Fig. 7. Notably, the
wavelength combination (N = 42) of the optimal discrete
model was included in the equidistant wavelength
combination (N = 71) of the optimal EC-PLS model. This
result indicated that these two models possessed good
consistency. The results also shown that the optimal
equidistant model indeed contained many redundant
wavelengths.
We further investigated the case of S = 40. A total of 260

wavelengths appeared in the 40 allowable models (K =
260). For each number of adopted wavelengths
ð1£k£260Þ, the corresponding predicted effect
(RMSEPM) is shown in Fig. 8. The corresponding
wavelength combination was as follows: 1242, 1266,
1290, 1314, 1338, 1362, 1386, 1410, 1434, 1458, 1482,

Fig. 4 RMSEPM of the local optimal models with EC-PLS for
(a) initial wavelength, (b) number of wavelength, and (c) number
of wavelength gaps

Table 3 Parameters and prediction effects of the SG-PLS model, optimal EC-PLS model, and two discrete combination models

method wavelengths models F RMSEPM/(g$L
–1) RP,M

SG-PLS 400–1880 and 2100–2300 nm 11 3.14 0.977

EC-PLS I = 1230 nm, N = 71, G = 6 7 2.67 0.983

DC-PLS N = 42 8 2.55 0.985

N = 35 8 2.62 0.984

Note: DC-PLS, discrete combination-PLS
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1506, 1530, 1554, 1578, 1602, 1626, 1650, 1674, 1698,
1722, 1746, 1770, 1794, 1818, 1842, 1866, 2108, 2132,
2156, 2180, 2204, 2228, 2252, 2276 nm. This model is
also a non-equidistant discrete combination model. The
wavelength combination ðΩ35Þ was included in the
wavelength combination ðΩ42Þ. Among all the models
that are superior to the optimal equidistant model, this
model ðΩ35Þ is the simplest. Therefore, it also has a
reference value.

3.5 Independent validation

The validation samples excluded from the modeling
optimization process were used to validate the optimal
EC-PLS model and the two discrete models. The PLS
regression coefficients were then calculated using the
smoothing spectra and measured values of all modeling
samples depending on the corresponding parameters. The
predicted Hb values of the validation samples were then
calculated using the obtained regression coefficients and
the smoothing spectra of the validation samples.
The prediction effects for validation of the three models

(RMSEP, RP, RRMSEP, and RPD) are summarized in
Table 4. The three models achieved good validation
effects, while the optimal discrete waveband model
performed better. The relationship between the predicted
and clinically measured Hb values of the 120 validation
samples for Hb are shown in Figs. 9 and 10. High
correlations were observed between the prediction and
clinically measured values.
Given that NIR spectra are flat and overlapping, the

wavelength selection for modeling is an important and
albeit difficult aspect. Establishing the global optimal
discrete model by using an exhaustive method is
impossible due to the large number of NIR wavelengths
and large amount of computation. A proper search strategy
has always been of great concern. By using the initial
wavelength, number of wavelengths, and number of

Fig. 5 First 200 values of RMSEPM with EC-PLS

Fig. 6 RMSEPM and number of adopted wavelengths of the
optimal discrete combination model corresponding to each
allowable model set

Fig. 7 Wavelength combinations of the optimal EC-PLS model
and optimal discrete combination model labeled in the average
spectrum of the samples

Fig. 8 RMSEPM of each discrete combination model in the case
of S = 40
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wavelength intervals as the parameters, EC-PLS can
identify the equidistant ergodic wavelength combination
within a large range. In the present study, in order to
eliminate the redundant wavelengths in the equidistant
model, the models were sorted. The front models, which
were equivalent to the optimal equidistant model, were
regarded as the allowable models. Then, the wavelengths
that appeared in the allowable models were sorted,
combined, and used for modeling, and the local optimal
discrete model was selected. Finally, the global optimal
discrete model was obtained by traversing the number of
allowable models (S). The results indicated that the above
method is effective in improving the prediction effect and
avoiding redundant wavelengths. Therefore, the proposed
strategy for the discrete combination model is appropriate.

4 Conclusion

A wavelength selection method for discrete wavelength
combinations was proposed based on equidistant wave-
length screening. With EC-PLS, the first round of
wavelength screening was achieved by traversing equidi-
stant wavelength combinations in a large range using three
parameters (I, N, and G). The information wavelengths
were aggregated based on the frequencies of the occurring
wavelengths in the allowable model set. Then, the second
round of wavelength screening was achieved by traversing

two dimensions: number of allowable models (S) and
number of wavelengths in the combination (k). The
redundant wavelengths were eliminated, and the prediction
performance was further improved. Finally, the ideal
discrete combination model was obtained.
The optimal discrete combination model was validated

by NIR analysis of Hb in human peripheral blood samples.
The results indicated that the optimal discrete model was
superior to the optimal EC-PLS model in terms of
prediction performance and complexity of the wavelength

Fig. 9 Relationship between the predicted and measured values
of the validation samples for the optimal EC-PLS model

Fig. 10 Relationship between the predicted and measured values
for the selected discrete combination models with (a) N = 42 and
(b) N = 35

Table 4 Validation effects of the optimal EC-PLS model and two discrete combination models

method N RMSEP/(g$L–1) RP RRMSEP RPD

EC-PLS 71 3.29 0.980 2.7% 4.6

DC-PLS 42 2.86 0.983 2.3% 5.3

35 2.90 0.981 2.4% 5.2

Note: DC-PLS, discrete combination-PLS
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model. Notably, the obtained RRMSEP for Hb detection
was less than 3%, which is expected for clinical
application. The proposed wavelength model can be
utilized to design dedicated spectrometers for Hb and
provides a valuable reference for further non-invasive Hb
detection.
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